

# Relative Permeability and Capillary Pressure Controls on CO<sub>2</sub> Migration and Brine Displacement

Sally M. Benson<sup>1</sup>

Ljubinko Miljkovic<sup>2</sup>, Liviu Tomutsa<sup>2</sup> and Christine Doughty<sup>2</sup>
<sup>1</sup>Energy Resources Engineering Dept., Stanford University
<sup>2</sup>Earth Sciences Division, Lawrence Berkeley National Laboratory



### Acknowledgements

- Funded by DOE Fossil Energy through the Zero Emissions Research and Technology Program (ZERT)
- Outstanding co-authors from Lawrence Berkeley National Laboratory
  - Ljubinko Miljkovic
  - Liviu Tomutsa
  - Christine Doughty



## Some Key Issues for CO<sub>2</sub> Storage in Deep Saline Aquifers

- What fraction of the pore space can be filled with CO<sub>2</sub>?
- How big will the CO<sub>2</sub> plume be?
- How much CO<sub>2</sub> will be dissolved?
- How much will capillary trapping immobilize CO<sub>2</sub>?
- Can accurate models be developed to predict CO<sub>2</sub> fate and transport?





## Core-flood Set-Up for Relative Permeability Measurements



\*Brine composition: CO<sub>2</sub> saturated brine with 0.5 molar potassium iodide



### Core-Scale Imaging of CO<sub>2</sub> Distributions





## CT Scans Measure Core Porosity





## Calculation of Permeability





## Core Permeability Distribution





## Laboratory Injections of Various CO<sub>2</sub>-Brine Proportions

#### Experimental Setup:

- > 5%, 10%, 20%, 50%, 80%, 90%, 100% CO<sub>2</sub> injections
- 3mL/min constant flow-rate
- 6.89MPa constant back-pressure
- > 16 ±2°C lab temperature
- Brine contains dissolved CO<sub>2</sub>
- CO<sub>2</sub> contains dissolved water



#### Measure CO<sub>2</sub> Saturation with CT Scanner

Digitally reconstruct image



## Relative Permeability Curves





### Small-scale CO<sub>2</sub> Saturation Variations



Sub-corescale saturation variations generally overlooked in relative permeability measurements.





## Simulated Injection of Various CO<sub>2</sub>-Brine Proportions

#### Simulation Cases

- > 10%, 90%, 100% CO<sub>2</sub> injections
- > 3mL/min constant flow-rate
- > 6.89MPa constant back-pressure
- > 16°C constant temperature
- Brine contains dissolved CO<sub>2</sub>
- > CO<sub>2</sub> contains dissolved water

#### Core Characterization

- Porosity/permeability "map" coarsened
- Relative permeability/capillary pressure curves matched to experimental curves
- TOUGH2 (Pruess, LBNL)





#### Simulated CO<sub>2</sub> Saturations

#### Constant Pc Produces Homogeneous CO2 Saturations





## Fitting Capillary Pressure Curve



## Simulated CO<sub>2</sub> Saturations

/ariable Pc Produces Small-scale CO2 Saturation Variations





## Capillary Pressure Curve





## Why should we care?



### Why Should We Care?

#### Average CO<sub>2</sub> saturation is:

- Decreased by sub-corescale heterogeneity
- Flow-rate dependent
- Affected by simulation grid resolution



## Subcore-scale Heterogeneity Decreases CO<sub>2</sub> Saturation





#### Effects of Flow Rate on CO<sub>2</sub> Saturation

90% CO<sub>2</sub> Injection Simulation



#### Capillary Pressure Distribution at Different Flow Rates





#### 90% CO<sub>2</sub>, 10% Brine Injection Variable Simulation Resolutions



Grid Size: 0.6×0.6×3mm

Grid Count: 67,350





Grid Size: 1x1x3mm Grid Count: 23,400



Grid Size: 2×2×3mm Grid Count: 5,400

### Finer Simulation Grids Decrease CO<sub>2</sub> Saturation





#### Conclusions

- Core-scale multi-phase flow experiments reveal strong influence of sub core-scale heterogeneity
- Spatial variations in capillary pressure behavior control CO<sub>2</sub> saturations
- CO<sub>2</sub> saturation:
  - Decreases due to bypass of low porosity regions
  - Decreases at lower flow rates
  - Predictions depend on grid size
- Similar phenomena are expected at all spatial scales
- Fundamental research needed to improve model predictions
  - Fundamental process understanding based on lab and field experiments
  - Up-scaling strategies that accurately include the effects of sub-grid scale heterogeneity
  - Calibration and validation of predictive models